On the set multicover problem in geometric settings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Algorithms for Set Multicover and Multiset Multicover Problems

Given a universe N containing n elements and a collection of multisets or sets over N , the multiset multicover (MSMC) or the set multicover (SMC) problem is to cover all elements at least a number of times as specified in their coverage requirements with the minimum number of multisets or sets. In this paper, we give various exact algorithms for these two problems, with or without constraints ...

متن کامل

A Multicover Nerve for Geometric Inference

We show that filtering the barycentric decomposition of a Čech complex by the cardinality of the vertices captures precisely the topology of k-covered regions among a collection of balls for all values of k. Moreover, we relate this result to the Vietoris-Rips complex to get an approximation in terms of the persistent homology.

متن کامل

On the Approximability of a Geometric Set Cover Problem

Given a finite set of straight line segments S in R and some k ∈ N, is there a subset V of points on segments in S with |V | ≤ k such that each segment of S contains at least one point in V ? This is a special case of the set covering problem where the family of subsets given can be taken as a set of intersections of the straight line segments in S. Requiring that the given subsets can be inter...

متن کامل

Algorithms for the transportation problem in geometric settings

For A,B ⊂ R, |A| + |B| = n, let a ∈ A have a demand da ∈ Z and b ∈ B have a supply sb ∈ Z, ∑ a∈A da = ∑ b∈B sb = U and let d(·, ·) be a distance function. Suppose the diameter of A ∪ B is ∆ under d(·, ·), and ε > 0 is a parameter. We present an algorithm that in O((n √ U log n+U logU)Φ(n) log(∆U/ε)) time computes a solution to the transportation problem on A,B which is within an additive error ...

متن کامل

Approximating the Online Set Multicover Problems via Randomized Winnowing

In this paper, we consider the weighted online set k-multicover problem. In this problem, we have a universe V of elements, a family S of subsets of V with a positive real cost for every S ∈ S, and a “coverage factor” (positive integer) k. A subset {i0, i1, . . .} ⊆ V of elements are presented online in an arbitrary order. When each element ip is presented, we are also told the collection of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Algorithms

سال: 2012

ISSN: 1549-6325,1549-6333

DOI: 10.1145/2390176.2390185